Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cryst Growth Des ; 24(3): 1284-1292, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38344671

RESUMO

Four crystalline polymorphs of the proinsecticide chlorfenapyr [4-bromo-2-(4-chlorophenyl)-1-ethoxymethyl-5-trifluoromethyl-1H-pyrrole-3-carbonitrile] have been identified and characterized by polarized light optical microscopy, differential scanning calorimetry, Raman spectroscopy, X-ray diffraction, and electron diffraction. Three of the four structures were considered polytypic. Chlorfenapyr polymorphs show similar lethality against fruit flies (Drosophila melanogaster) and mosquitoes (Anopheles quadrimaculatus) with the least stable polymorph showing slightly higher lethality. Similar activities may be expected to be consistent with structural similarities. Knockdown kinetics, however, depend on an internal metabolic activating step, which further complicates polymorph-dependent bioavailability.

2.
ACS Nano ; 17(21): 20962-20967, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37871004

RESUMO

Development of biodegradable plastic materials is of primary importance in view of acute environmental and health problems associated with the accumulation of plastic waste. We fabricated a biodegradable composite material based on hydroxyethyl cellulose polymer and tyrosine nanocrystals, which demonstrates enhanced strength and ductility (typically mutually excluding properties), superior to most biodegradable plastics. This emergent behavior results from an assembly pattern that leads to a uniform nanoscale morphology and strong interactions between the components. Water-resistant biodegradable composites encapsulated with hydrophobic polycaprolactone as a protection layer were also fabricated. Self-assembly of robust sustainable plastics with emergent properties by using readily available building blocks provides a valuable toolbox for creating sustainable materials.

3.
Adv Mater ; 34(26): e2202088, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35451121

RESUMO

Structural analysis of beam-sensitive materials by transmission electron microscopy (TEM) represents a significant challenge, as high-resolution TEM (HRTEM) requires high electron doses that limit its applicability to stable inorganic materials. Beam-sensitive materials, e.g., organic crystals, must be imaged under low dose conditions, leading to problematic contrast interpretation and loss of fine structural details. Here, HRTEM imaging of organic crystalline materials with near-atomic resolution of up to 1.6 Å is described, which enables real-space studies of crystal structures, as well as observation of co-existing polymorphs, crystal defects, and atoms. This is made possible by a low-dose focal-series reconstruction methodology, which provides HRTEM images where contrast reflects true object structure and can be performed on contemporary cryo-EM instruments available to many research institutions. Copper phthalocyanine (CuPc), a perchlorinated analogue of CuPc, and indigo crystalline films are imaged. In the case of indigo crystals, co-existing polymorphs and individual atoms (carbonyl oxygen) can be observed. In the case of CuPc, several polymorphs are observed, including a new one, for which the crystal structure is found based on direct in-focus imaging, accomplishing real-space crystal structure elucidation. Such direct analysis can be transformative for structure studies of organic materials.

4.
Nano Lett ; 21(23): 9916-9921, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34813333

RESUMO

Colloidal inorganic nanofluorides have aroused great interest for various applications with their development greatly accelerated thanks to advanced synthetic approaches. Nevertheless, understanding their colloidal evolution and the factors that affect their dispersion could improve the ability to rationally design them. Here, using a multimodal in situ approach that combines DLS, NMR, and cryogenic-TEM, we elucidate the formation dynamics of nanofluorides in water through a transient aggregative phase. Specifically, we demonstrate that ligand-cation interactions mediate a transient aggregation of as-formed CaF2 nanocrystals (NCs) which governs the kinetics of the colloids' evolution. These observations shed light on key stages through which CaF2 NCs are dispersed in water, highlighting fundamental aspects of nanofluorides formation mechanisms. Our findings emphasize the roles of ligands in NCs' synthesis beyond their function as surfactants, including their ability to mediate colloidal evolution by complexing cationic precursors, and should be considered in the design of other types of NCs.


Assuntos
Fluoretos , Nanopartículas , Cátions , Coloides/química , Ligantes , Nanopartículas/química
5.
Chemphyschem ; 22(21): 2182-2189, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34407283

RESUMO

The mechanism by which safranine O (SFO), an ice growth inhibitor, halts the growth of single crystal tetrahydrofuran (THF) clathrate hydrates was explored using microfluidics coupled with cold stages and fluorescence microscopy. THF hydrates grown in SFO solutions exhibited morphology changes and were shaped as truncated octahedrons or hexagons. Fluorescence microscopy and microfluidics demonstrated that SFO binds to the surface of THF hydrates on specific crystal planes. Cryo-TEM experiments of aqueous solutions containing millimolar concentrations of SFO exhibited the formation of bilayered lamellae with an average thickness of 4.2±0.2 nm covering several µm2 . Altogether, these results indicate that SFO forms supramolecular lamellae in solution, which might bind to the surface of the hydrate and inhibit further growth. As an ice and hydrate inhibitor, SFO may bind to the surface of these crystals via ordered water molecules near its amine and methyl groups, similar to some antifreeze proteins.

6.
ACS Cent Sci ; 7(5): 900-908, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34079905

RESUMO

The crystallization mechanisms of organic molecules in solution are not well-understood. The mechanistic scenarios where crystalline order evolves directly from the molecularly dissolved state ("classical") and from initially formed amorphous intermediates ("nonclassical") are suggested and debated. Here, we studied crystallization mechanisms of two widely used analgesics, ibuprofen (IbuH) and etoricoxib (ETO), using direct cryogenic transmission electron microscopy (cryo-TEM) imaging. In the IbuH case, parallel crystallization pathways involved diverse phases of high and low density, in which the instantaneous formation of final crystalline order was observed. ETO crystallization started from well-defined round-shaped amorphous intermediates that gradually evolved into crystals. This mechanistic diversity is rationalized by introducing a continuum crystallization paradigm: order evolution depends on ordering in the initially formed intermediates and efficiency of molecular rearrangements within them, and there is a continuum of states related to the initial order and rearrangement rates. This model provides a unified view of crystallization mechanisms, encompassing classical and nonclassical pictures.

7.
Nat Commun ; 12(1): 229, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431908

RESUMO

Understanding inorganic nanocrystal (NC) growth dynamic pathways under their native fabrication environment remains a central goal of science, as it is crucial for rationalizing novel nanoformulations with desired architectures and functionalities. We here present an in-situ method for quantifying, in real time, NCs' size evolution at sub-nm resolution, their concentration, and reactants consumption rate for studying NC growth mechanisms. Analyzing sequential high-resolution liquid-state 19F-NMR spectra obtained in-situ and validating by ex-situ cryoTEM, we explore the growth evolution of fluoride-based NCs (CaF2 and SrF2) in water, without disturbing the synthesis conditions. We find that the same nanomaterial (CaF2) can grow by either a particle-coalescence or classical-growth mechanism, as regulated by the capping ligand, resulting in different crystallographic properties and functional features of the fabricated NC. The ability to reveal, in real time, mechanistic pathways at which NCs grow open unique opportunities for tunning the properties of functional materials.

8.
Beilstein J Org Chem ; 17: 42-51, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33488830

RESUMO

The facile fabrication of free-floating organic nanocrystals (ONCs) was achieved via the kinetically controlled self-assembly of simple perylene diimide building blocks in aqueous medium. The ONCs have a thin rectangular shape, with an aspect ratio that is controlled by the content of the organic cosolvent (THF). The nanocrystals were characterized in solution by cryogenic transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering. The ONCs retain their structure upon drying, as was evidenced by TEM and atom force microscopy. Photophysical studies, including femtosecond transient absorption spectroscopy, revealed a distinct influence of the ONC morphology on their photonic properties (excitation energy transfer was observed only in the high-aspect ONCs). Convenient control over the structure and function of organic nanocrystals can enhance their utility in new and developed technologies.

9.
Nanoscale ; 12(16): 8909-8914, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32266900

RESUMO

Sustainable energy storage devices are required in view of the current demand for environmentally friendly technology. We fabricated a fully recyclable electrochemical double-layer supercapacitor (EDLC), based on multiwalled carbon nanotube (MWCNT) electrodes, an organic nanocrystalline (ONC) dielectric membrane, and an aqueous electrolyte. The entire EDLC device was fabricated and recycled using simple solution processing. The pristine and recycled EDLC devices maintained high stability after 18 000 cycles in cyclic voltammetry testing. Our results advance a concept of sustainable energy storage devices that are easy to fabricate and recycle.

10.
Nature ; 579(7800): 540-543, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32214264

RESUMO

Protein crystallization is important in structural biology, disease research and pharmaceuticals. It has recently been recognized that nonclassical crystallization-involving initial formation of an amorphous precursor phase-occurs often in protein, organic and inorganic crystallization processes1-5. A two-step nucleation theory has thus been proposed, in which initial low-density, solvated amorphous aggregates subsequently densify, leading to nucleation4,6,7. This view differs from classical nucleation theory, which implies that crystalline nuclei forming in solution have the same density and structure as does the final crystalline state1. A protein crystallization mechanism involving this classical pathway has recently been observed directly8. However, a molecular mechanism of nonclassical protein crystallization9-15 has not been established9,11,14. To determine the nature of the amorphous precursors and whether crystallization takes place within them (and if so, how order develops at the molecular level), three-dimensional (3D) molecular-level imaging of a crystallization process is required. Here we report cryogenic scanning transmission microscopy tomography of ferritin aggregates at various stages of crystallization, followed by 3D reconstruction using simultaneous iterative reconstruction techniques to provide a 3D picture of crystallization with molecular resolution. As crystalline order gradually increased in the studied aggregates, they exhibited an increase in both order and density from their surface towards their interior. We observed no highly ordered small structures typical of a classical nucleation process, and occasionally we observed several ordered domains emerging within one amorphous aggregate, a phenomenon not predicted by either classical or two-step nucleation theories. Our molecular-level analysis hints at desolvation as the driver of the continuous order-evolution mechanism, a view that goes beyond current nucleation models, yet is consistent with a broad spectrum of protein crystallization mechanisms.


Assuntos
Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Ferritinas/química , Ferritinas/ultraestrutura , Cristalização , Imageamento Tridimensional
11.
Acc Chem Res ; 52(9): 2634-2646, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31478643

RESUMO

Most robust functional organic materials are currently based on polymers. These materials exhibit high stability, but once formed they are difficult to modify, adapt to their environment, and recycle. Materials based on small molecules that are held together by noncovalent interactions can offer an alternative to conventional polymer materials for applications that require adaptive and stimuli-responsive features. However, it is challenging to engineer macroscopic noncovalent materials that are sufficiently robust for practical applications. This Account summarizes progress made by our group towards the development of noncovalent "aqua materials" based on well-defined organic molecules. These materials are uniquely assembled in aqueous media, where they harness the strength of hydrophobic and π-π interactions between large aromatic groups to achieve robustness. Despite their high stability, these supramolecular systems can dynamically respond to external stimuli. We discuss design principles, fundamental properties, and applications of two classes of aqua materials: (1) supramolecular gels and (2) nanocrystalline arrays. The materials were characterized by a combination of steady-state and time-resolved spectroscopic techniques, electrical measurements, molecular modeling, and high-resolution microscopic imaging, in particular cryogenic transmission electron microscopy (cryo-TEM) and cryogenic scanning electron microscopy (cryo-SEM). All investigated aqua materials are based on one key building block, perylene diimide (PDI). PDI exhibits remarkably stable intermolecular bonds, together with useful chemical and optoelectronic properties. PDI-based amphiphiles carrying poly(ethylene glycol) (PEG) were designed to form linear supramolecular polymers in aqueous media. These one-dimensional arrays of noncovalently linked molecules can entangle and form three-dimensional supramolecular networks, leading to soft gel-like materials. Tuning the strength of interactions between fibers enables dynamic adjustment of viscoelastic properties and functional characteristics. Besides supramolecular gels, we show that simple PDI-based molecules can self-assemble in aqueous medium to form robust organic nanocrystals (ONCs). The mechanical and optoelectronic properties of ONCs are distinctly different from gel-phase materials. ONCs are excellent building blocks for macroscopic free-standing materials that can be used in dry state, unlike hydrogels. Being constructed from small molecules, ONC materials are easy to fabricate and recycle. High thermal robustness, good mechanical properties, and modular design render ONC materials versatile and suitable for a variety of applications. In the future, noncovalent aqua materials can become a sustainable alternative to conventional polymer materials. Examples from our research include stimuli-responsive and recyclable filtration membranes for preparative nanoparticle separation, water purification and catalysis, light-harvesting hydrogels for solar energy conversion, and nanocrystalline films for switchable surface coatings and electronic devices.

12.
ACS Nano ; 13(10): 11097-11106, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31403766

RESUMO

In view of their facile fabrication and recycling, functional materials that are built from small molecules ("molecular plastics") may represent a cost-efficient and sustainable alternative to conventional covalent materials. We show how molecular plastics can be made robust and how their (nano)structure can be tuned via modular construction. For this purpose, we employed binary composites of organic nanocrystals based on a perylene diimide derivative, with graphene oxide (GO), bentonite nanoclay (NC), or hydroxyethyl cellulose (HEC), that both reinforce and enable tailoring the properties of the membranes. The hybrids are prepared via a simple aqueous deposition method, exhibit enhanced mechanical robustness, and can be recycled. We utilized these properties to create separation membranes with tunable porosity that are easy to fabricate and recycle. Hybrids 1/HEC and 1/NC are capable of ultrafiltration, and 1/NC removes heavy metals from water with high efficiency. Hybrid 1/GO shows mechanical properties akin to covalent materials with just 2-10% (by weight) of GO. This hybrid was used as a membrane for immobilizing ß-galactosidase that demonstrated long and stable biocatalytic activity. Our findings demonstrate the utility of modular molecular nanoplastics as robust and sustainable materials that enable efficient tuning of structure and function and are based on self-assembly of readily available inexpensive components.

13.
Small ; 15(38): e1902936, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31379126

RESUMO

The widely employed crystallization of organic molecules in solution is not well understood and is difficult to control. Employing polymers as crystallization media may allow enhanced control via temperature-induced regulation of polymer dynamics. Crystallization of a small organic molecule (perylene diimide) is investigated in polymer matrices (polystyrene) that enable the mechanistic study and control over order evolution. The crystallization is induced by heating above the glass transition temperature of the polymer, and quenched by cooling, leading to stabilization of crystallization intermediates. The mechanistic studies include direct imaging by electron microscopy, revealing a complex self-assembly process starting from amorphous aggregates that densify and transform into an unstable crystalline phase of N ,N'-bis(2,6-dimethylphenyl)perylene-3,4,9,10-tetracarboxylic diimide (DMP-PDI), followed by a conversion into a more stable crystalline form. Stabilization of crystallization intermediates at room temperature provides diverse structures based on a single molecular component. These findings have implications for the rational design of organic crystalline materials.

14.
Nanoscale ; 11(8): 3733-3740, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30742182

RESUMO

We report on utilizing free-standing hybrid perylenediimide/carbon nanotube (PDI/CNT) films fabricated in air as back contacts for fully inorganic perovskite solar cells (glass/FTO/dense TiO2/mesoporous TiO2/CsPbBr3/back electrode). The back contact electrode connection is performed by film transfer rather than by vacuum deposition or by wet processing, allowing the formation of highly homogeneous contacts under ambient conditions. The use of this novel electrode in solar cells based on CsPbBr3 resulted in efficiency of 5.8% without a hole transporting layer; it is significantly improved in comparison to the reference cells with standard gold electrodes. Overall device fabrication can be performed on air, using inexpensive processing methods. The hybrid film electrodes dramatically improve the cell photo-stability under ambient conditions and under real-life operating conditions outdoors. The champion unencapsulated device demonstrated less than 30% efficiency loss over 6 weeks of outdoor aging in Negev desert conditions. The CNT/PDI electrodes offer the combination of fabrication simplicity, unique contacting approach, high efficiency and good operational stability for perovskite photovoltaics.

15.
Nanoscale ; 10(43): 20147-20154, 2018 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-30221262

RESUMO

Upon photoexcitation, self-assembled PDI nanocrystals (S1S0) in the form of rods of 70 nm width and 1 µm length are subject to a symmetry breaking charge separation (SBCS) as the first step in the singlet fission (SF) sequence. Hereby, the correlated pair of triplet excited states 1(T1T1) is formed with a quantum yield of 122%. Decoherence and triplet diffusion within the nanocrystals affords a long-lived, uncorrelated pair of triplet excited states (T1 + T1) with a quantum yield of 24%.

16.
ACS Cent Sci ; 4(8): 1031-1036, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30159400

RESUMO

Organic crystals are of primary importance in pharmaceuticals, functional materials, and biological systems; however, organic crystallization mechanisms are not well-understood. It has been recognized that "nonclassical" organic crystallization from solution involving transient amorphous precursors is ubiquitous. Understanding how these precursors evolve into crystals is a key challenge. Here, we uncover the crystallization mechanisms of two simple aromatic compounds (perylene diimides), employing direct structural imaging by cryogenic electron microscopy. We reveal the continuous evolution of density, morphology, and order during the crystallization of very different amorphous precursors (well-defined aggregates and diffuse dense liquid phase). Crystallization starts from initial densification of the precursors. Subsequent evolution of crystalline order is gradual, involving further densification concurrent with optimization of molecular ordering and morphology. These findings may have implications for the rational design of organic crystals.

17.
Angew Chem Int Ed Engl ; 57(29): 8871-8874, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-29862609

RESUMO

An amphiphile based on polyethylene glycol (PEG) polymer and two molecular moieties (perylene diimide and C7 fluoroalkyl, PDI and C7 F) attached to its termini assembles into crystalline films with long-range order. The films reversibly switch from crystalline to amorphous above the PEG melting temperature. The adaptive behavior stems from the responsiveness of the PEG domain and the robustness of the PDI and C7 F assemblies. The hydrophobicity of the film can be controlled by heating, resulting in switching from highly hydrophobic to superhydrophilic. The long-range order, reversible crystallinity switching, and the temperature-controlled wettability demonstrate the potential of block copolymer analogues based on simple polymeric/molecular hybrids.

18.
J Am Chem Soc ; 140(14): 4761-4764, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29589749

RESUMO

We demonstrate a solution-based fabrication of centimeter-size free-standing films assembled from organic nanocrystals based on common organic dyes (perylene diimides, PDIs). These nanostructured films exhibit good mechanical stability, and thermal robustness superior to most plastics, retaining the crystalline microstructure and macroscopic shape upon heating up to 250-300 °C. The films show nonlinear optical response and can be used as ultrafiltration membranes. The macroscopic functional materials based on small molecules can be alternative or complementary to materials based on macromolecules.

19.
Chemistry ; 24(12): 2898-2912, 2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-28453900

RESUMO

Several transition metal ions, like Fe2+ , Co2+ , Ni2+ , and Zn2+ complex to the ditopic ligand 1,4-bis(2,2':6',2''-terpyridin-4'-yl)benzene (L). Due to the high association constant, metal-ion induced self-assembly of Fe2+ , Co2+ , and Ni2+ leads to extended, rigid-rod like metallo-supramolecular coordination polyelectrolytes (MEPEs) even in aqueous solution. Here, we present the kinetics of growth of MEPEs. The species in solutions are analyzed by light scattering, viscometry and cryogenic transmission electron microscopy (cryo-TEM). At near-stoichiometric amounts of the reactants, we obtained high molar masses, which follow the order Ni-MEPE≈Co-MEPE

20.
ACS Nano ; 12(1): 317-326, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29257866

RESUMO

Designing supramolecular nanotubes (SNTs) with distinct dimensions and properties is highly desirable, yet challenging, since structural control strategies are lacking. Furthermore, relatively complex building blocks are often employed in SNT self-assembly. Here, we demonstrate that symmetric bolaamphiphiles having a hydrophobic core comprised of two perylene diimide moieties connected via a bipyridine linker and bearing polyethylene glycol (PEG) side chains can self-assemble into diverse molecular nanotubes. The structure of the nanotubes can be controlled by assembly conditions (solvent composition and temperature) and a PEG chain length. The resulting nanotubes differ both in diameter and cross section geometry, having widths of 3 nm (triangular-like cross-section), 4 nm (rectangular), and 5 nm (hexagonal). Molecular dynamics simulations provide insights into the stability of the tubular superstructures and their initial stages of self-assembly, revealing a key role of oligomerization via side-by-side aromatic interactions between bis-aromatic cores. Probing electronic and photonic properties of the nanotubes revealed extended electron delocalization and photoinduced charge separation that proceeds via symmetry breaking, a photofunction distinctly different from that of the fibers assembled from the same molecules. A high degree of structural control and insights into SNT self-assembly advance design approaches toward functional organic nanomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...